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Aspect on vortex lines in Euler flow
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A class of Euler flows of an ideal incompressible liquid is considered. Helical flow structures are classified
by Hopf index, Brouwer degree, and linking number in geometry. A mechanism of generation and annihilation
of vortex line is given. The evolution equation of the vortex line has been given and its bifurcation behavior at
the critical points is also discussed in detail. Three kinds of length scales are given: [ (—¢")?, [oct—¢", and

[=const.
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I. INTRODUCTION

Vortex dynamics plays important role in airfoils [1], fluid
dynamics [2], magnetohydrodynamic [3,4], small scale tur-
bulence and astrophysics [5,6]. The vorticity field is a sole-
noidal field and will not have the field line with end points
within the flow. Thus, it is convenient to study the evolution
of vortex lines in terms of certain topological indicators of
closed curves. The most important topological invariant for
the vortex lines is the kinetic helicity, which is a topological
invariant for barotropic inviscid flow under conservative
body forces [7]. Kinetic helicity results from Kelvin theorem
on circulation and measures the entangledness of vortex
lines. It is the simplest measure of topological complexity of
an advected fluid. It characterizes the internal structure of the
vortex tubes (twisting, torsion, and kinking) and also the
external relationships between the tubes themselves, such as
linking and knotting of vortex tubes. Helical flow structures
exist in nature where free shear flows occur, such as in tor-
nadoes and storm systems. Helical modes are also known to
be important in the wakes of axisymmetric bodies when the
angle of attack is nonzero. Helical structures can spontane-
ously emerge from nonhelical (mirror symmetric) states due
to the growth of unstable modes. Such breakdown of the
mirror symmetry can occur in a rotating flow since the rota-
tion vector provides a preferred direction and can lead from a
nonhelical state to a helical flow. This can be of primary
importance for the a dynamo effect [8] where helical fluc-
tuations can, under certain conditions, amplify the mean
magnetic field.

In the present work, we consider a class of Euler flows of
an ideal incompressible liquid and focus on the kinetic he-
licity. In Secs. IT and III, we classify the topological structure
of vortex lines in terms of Hopf index, Brouwer degree, and
linking number in geometry. We discuss the evolution equa-
tion of vortex line in terms of m field [9]. In Sec. IV, we
present a mechanism of generation and annihilation of vortex
lines. In Sec. V, we study the bifurcation [10] behavior of
Euler flow at the bifurcation point in detail. There are four
cases and three kinds of length scales.
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II. TOPOLOGICAL STRUCTURE OF THE VORTEX LINE

It is known that the equations of an ideal incompressible
liquid, i.e., the Euler equations

av
— tVVV4Vp=0,

divVv =0, (1)
are Hamiltonian equations [11]. The Hamiltonian structure
can be easily introduced in terms of vorticity Q=rot V, de-
termined from equation

193
? =rot[V,Q], (2)

where the square brackets denote vector product of the two-
vector velocity and vorticity. In this case

Z09)
= A 3)

where the Hamiltonian H is the energy of the system,
1
H= f 5V2d3x, (4)

and the Poisson brackets for any two functions F' and G are
defined by

{F,G}:f (Q,[rot?—é,rot%})aﬁx. (5)

Here, 6F/ &), 6G/ &) are variational derivatives, and round
brackets are defined as a dot product. The given form pos-
sesses all the necessary properties of Poisson brackets. This
form is antisymmetric and satisfies the Jacobi identity.
Hence, Eq. (2) is a Hamiltonian equation.

The liquid flow topology can be characterized by kinetic
helicity T" as

r= f (V,Q)dx. (6)

Kinetic helicity I is an invariant [7] for both incompressible
and compressible polytropic nonmagnetized flows in conser-
vative forces and in a compact domain, which is a direct
consequence of the Thompson theorem [12].
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Following Faddeev [9], the transverse field ) can be ex-
pressed in terms of the n-field [13]:

Q'=A*m-[gm,gn]), ijk=1.23, (7)

where n2=1, A is a dimensional constant that does not de-
pend on the time or the coordinates. Volovik ef al. have
shown [14] that for the quantum case, A=7%/4m. The above
formula gives the transition from a differential relationship
between the components of the vorticity field div =0 to an
algebraic one: n’=1. For the given class of flows, R’ is iso-
porphic to S3; i.e., the problem of classification of flow is that
of classfication of smooth maps S°— S?. These maps are
characterized by homotropic group m5(5%)=Z; i.e., any class
of flows is determined by the integer values that represent
the linking number for the two curves n(r)=n; and n(r)
=n,, and consequently, for the two vortex lines correspond-
ing to these curves. This index for smooth maps S*— §? is
called the Hopf invariant, which can be expressed via the
map n(r) [15]. The unit vector field n is the section of a
sphere bundle S2.

We define two two-dimensional unit vectors e;,e, in S2,
which are normal to each other; i.e.,

e -e,=e,-n=e,-n=0,

(8)

€ e =€ -e=n- n=1.

It is easily obtained that n-[dn,d;n]=2€"d;¢{;c5. The
velocity field V can then be written as [9,16],
V = 2Ael . Vez. (9)

Consider a two-dimensional order parameter g=(y/',¢?) in
plane formed by unit vector e;,e,, which satisfies

W‘

e’f=£, =e’—  ab=1,2, (10)

where ||if|=(#y)"?, and € is Levi-Civita antisymmetric
tensor. The zero points of the order parameter are just the
singular points of e; and e,. The velocity V can be expressed
by

[

V=24e"—V . 1
ACTA Y Tl (1

The transverse field can be written now in terms of the i
field:

v
= Mé%ww|wr

(12)

Using the relation

A Ul =

ol o e

The transverse field becomes

2w (), (13)

Q= 87TA62(¢)Di<%), (14)

where [17,18]
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. 1
D’(f> = Eéfke“bajwaklpb, ij,k=1,2,3, a,b=1,2.
X

(15)
Equation (15) tells us that the transverse field
QO'=0, only if ¢ # 0,
Q' #0, onlyif ¢y=0. (16)
Under the regular condition
D(f) # 0, (17)
X

the general solution of
P(rxt x%x%) =0,

P(tx 33 x%) =0 (18)

is just the vortex line. The kth vortex line L, can be ex-
pressed by line parameter s:

x,i=x,1(t,s), x,%=x,%(t,s), x =x,3<(t,s) e (19)

The S-function theory [19] tells us

N
5 (x(s))
SW=2p f —————ds, (20)
k=1 v
D —
ujllm

where

D<£> = %éfe“”a—waiy,

oF o i,j=1,2,a,b=1,2, (21)
u u' Ju

and M, is the kth planar element transverse to vortex line L;
with local coordinates (u',u?). The positive integer number
By is the Hopf index, which means that when x covers the
zero point once, the vector parameter field ¢ covers the cor-
responding region in ¢ space B times. In Moffatt’s paper
[7], B, is also called winding number traced from Gauss. The
direction of vector vortex line is given by

d_xi B D'(yx)
ds  D(ylu)’

From Egs. (20) and (22), the transverse field  can be writ-
ten as

(22)

N i
=8mAY, Bkﬂkf Z_x53(x - x;(s))ds, (23)
k=1 S

Ly

where 7,=sgn D(/u)==1. It is the Brouwer degree of i
mapping, which characterizes the direction of vortex line.
Hence,

f O'do; = 8mA By . (24)
M

k

Substituting Eq. (24) into Eq. (6), one can obtain
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N

[=87AY, B f Vidx'. (25)
L

k=1 "

When these vortex lines are closed curves, i.e., a family of
knots &(k=1,2,...,N), Eq. (25) becomes

N

I=87AY, Bknkjg Vidx'. (26)
&

k=1 2

In this section, the topological structure of the vortex line
is studied under the regular condition (17). When the regular
condition fails, the branching of vortex line will occur. This
will be discussed in Secs. IV and V.

III. LINKING NUMBER OF KNOTTED VORTEX LINES

Linking numbers are the simplest topological relation be-
tween two closed curves; this number is zero for two un-
linked curves. In this section, we will discuss the linking
numbers of the knotted vortex lines. In order to do that, we
define Gauss mapping:

n:s' x S'— §2, (27)
where 1 is a unit vector

yY—X

n(x,y) = (28)

where x and y are two points, respectively, on the knotted
vortex lines §; and &. When x and y are the same point on
the same vortex line , 1 is just the unit tangent vector. When
x and y cover the corresponding vortex lines §J and &, n
becomes the section of sphere bundle S>. As in the above
section, we can define two two-dimensional unit vectors €
=¢€(x,y). €,n are normal to each other; i.e.,

(29)
E] 61 262‘é2=ﬁ ﬁzl
In fact, the velocity V can be expressed as
Vi=2A4€"%e9.eb, a,b=1,2. (30)

Substituting it into Eq. (26), one can obtain an expression of
kinetic helicity
N

['=16mA%Y, ,Bknk§ €’e’(x,y)del(x,y)dx’.  (31)
&k

k=1

It can be also written as

I'=16mA> E ,Bknk3€ f €9 (x,y)dje"(x,y)dx' A dy’.
kit 674

(32)

There are three cases: (1) &,& are different vortex lines, X,y
are different points; (2) &, are the same vortex line, X,y are
different points; (3) &.& are the same vortex line, x,y are the
same point. Thus, Eq. (32) can be written as
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I = 647°A2 4— E Bmkff 3§ €9 (x,y)0;
&g

T k=1(x#y)

: 1
e’ (x,y)dx' A dy’ *am 2 ,Bkmjg €9 (x,y)d;
&

T k=1(x=y)

eb(x, y)dxi Ady

+— E ﬁkﬂké jg €9 (x,y)0;
&Y &

Xel(x,y)dx' Ady’ | . (33)

The first term is just the writhing number [21] w.(&) of
vortex line &. The second term is the twisting number T,,(&;)
of vortex line &. From White’s formula [20], the self-linking
number S(&,) of the vortex line &, is

S(&) =w, (&) +T,(&). (34)

The third term is Gauss linking number L of vortex lines
& and & ie.,

L(gkagl)
| N
= _2 ﬁkﬂk% 3€ fabaiea(X,y)o"jeb(X,y)dxi/\dyi
4o &Y

k#1. (35)
We then obtain the important result
r= 64#A2[2 BimS(&) + E Bonl(§.6) |- (36)
k=1

This result is correct in either quantum case [14] or classical
fluid [7]. Tt is obvious that 8 wA B, 7, (A=7/4m) in the quan-
tum case corresponds to the classical flux strength y of vor-

tex. If there are N filaments with strength x; (k
=1,2,...,N) whose self-knottedness degree, i.e., B,=1 in a
classical fluid, the kinetic helicity equals

647TZA22Z121 ﬂkL(gk, gl) =E§X[=1kal77k7]lakl (ak1= 1 if two vor-
tex lines &,¢; are linked, ay,;=0 if ¢ are not singly linked).
The kinetic helicity is an invariant for both incompressible
and compressible polytropic nonmagnetized flows in conser-
vative forces and in a compact domain. In the next two sec-
tions we will discuss bifurcation behavior of vortex lines in
Euler flow, which keep the kinetic helicity invariant.

The evolution equation of the vector field n has been ob-
tained [13] by Kuznetsov erf al.; i.e.,

on
—+V-Vn=0. (37)
ot

It is also Hamiltonian:

on { S(HIA) ]
—=|n, .
on

(38)
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IV. BRANCHING OF VORTEX LINES

The evolution of the vortex line can be discussed from
Eq. (14). For simplicity, we fix the x*=z coordinate and take
the XOY plane as the cross section. The intersection line
between the vortex line evolution surface and the cross sec-
tion is just the motion curve of the vortex line. In this two-
dimensional case, the vorticity becomes [18]

3= 87752(¢)D<;¢> (39)

and
Qi=8w52(z/r)Di<;¢>, i=1,2. (40)
where  D(y/x)=€d,yf'olP,  D'(lx)= €l a b,

DA(Ylx)= o,

It is obvious that the continuity equation is satisfied:
9%+ Q=0 (41)

The velocity of the intersection point of vortex line and the
cross section is given by

dx' _ D'(ylx)
dt  D(yix)’

From Eq. (42), we know that when D(i//x)=0 at point
(r",x"), the velocity dx'/dt or dx*/dt is not unique in the
neighborhood of (¢*,x"). This critical point is called the
branch point [22,24]. At the critical point, the normal veloc-
ity cannot be defined, which is also pointed out by other
physicists [3,18]. Because of the conservation of vortex cir-
culation, it should branch or split [22,23]. Taking the Taylor
expansion of the solution of Eq. (18), one can obtain
the direction of the zero point on the cross section at the
critical point. Let us do that in the following. If we
assume that D*(i/x) *x*) 70, then there are usually two
kinds of branch points; namely, the limit points
where  D'(/x)|x»#0 and the bifurcation points
where D'(i/x)|*x+=0. In this section, we discuss only the
branching process of the vortex lines at the limit point.
When D'(i/x)| ) # 0, we obtain from Eq. (42)

(42)

o Dum| )
dt D(iﬂ/x) (t*’;m) ’
i.e.,
dt
— =0. (44)
dx (l*,x*)

Taking the Taylor expansion of t=#(x',¢) at the limit point of
vortex line, one can obtain
f—f= &
T2 (dx")?

(' =212, (45)

(" x")

which is a parabola in x'-¢ plane. From Eq. (45) one can
obtain two solutions, which give the branch solutions of vor-
tex line at the limit points. If [d?/(dx")?]| x>0, we have
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the branch solutions for > ¢"; otherwise, we have the branch
solutions for r<\t". The former is related to the origin of the
vortex line at the limit points. From the continuty equation,
we know that the topological number of the vortex line is
identically conserved. This means that the total topological
number of the final vortex lines equals that of the initial
vortex lines. The total numbers of these two generated vortex
lines must be zero at the limit point; i.e., the two generated
vortex lines have be opposite:

Bimi+ By =0. (46)

It is a process of generation or annihilation of vortex lines
[25-27]. At the neighborhood of the limit point, we denote
the length scale /=Ax. From Eq. (45), one can obtain the
approximation relation

Loclle =72 (47)
The growth rate y=1/At or annihilation rate of vortex lines is
yo(t—1)" (48)

It is obvious that E, o (r—¢")~' [30]. This result agrees with
the numerical data [28,29].

V. BIFURCATION OF VORTEX LINES

Now let us study the bifurcation of the vortex line at its
bifurcation point where D'(i/x) «*x*=0. The Taylor ex-
pansion of the solution of #' and #? in the neighborhood of
the bifurcation point can generally be denoted as A(x'
—x"242B(* -2 (-1 + C(t—1")*>+- =0, where A, B,
and C are three constants. Here we assume A # 0; from the
Taylor expansion, we can then obtain

(dx1>2 xl
Al— | +2B— +C=0. 49
dt dt (49)

There are four kinds of important cases:
Case 1: A#0, (B>—AC)>0. We get two different direc-
tions of vortex lines

-B+\B*-AC
= (50)
("7, A

as

dt

It is the intersection of two vortex lines, which means that
two vortex lines meet and then depart from each other at the
bifurcation point.

Case 2: A#0, (B2>—AC)=0. The direction of vortex lines
is only one

!
dt

(t".7,,)

-B
e (51)

which includes three important situations: (a) one vortex line
split into three vortex lines, (b) two vortex lines merge into
one vortex line, and (c) two vortex lines tangentially inter-
sect at the bifurcation point.

Case 3: A=0, (B>—AC) #0 (or B#0), C#0. We have
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ar

—-B+\B*>-AC 2B
dx! == ¢ %7

c - (2

.
(",r,)

There are two important cases: Firstly, one vortex line splits
into three at the bifurcation point; secondly, three vortex line
lines merge into one at the bifurcation point.

Case 4: A=C=0. We obtain

ar
dx!

dx!
=0, or — =0. (53)
d[ (I*‘;m)

(t".7,)

At the neighborhood of the bifurcation point, we denote
scale length Ax=1[. From Egs. (50)-(52) we can then obtain
the approximation asymptotic relation

loc(t=1). (54)

The growth rate y or annihilation rate of vortex line y of the
vortex line is

7y o const. (55)

From Eq. (53), one can obtain

[=const, y=0. (56)

It is obvious that the vortex lines are relatively at rest when
[=const.

We denote the total topological number C of vortex line
configuration as

N N
C=2 BimSE)+ 2 Bl (§.€), (57)
k=1 1

k=

which is a Hopf invariant, and also called a topological
charge by Faddeev. Then

I =647m2A%C. (58)

Since the kinetic helicity I is invariant for barotropic in-
viscid flow under conservative body forces, the sum of the
the final vortex topological number must be equal to that of
the original vortex lines at the bifurcation point; i.e.,

C = const. (59)

This relation and the critical condition determine the bifur-
cation situation of the vortex lines. The bifurcation behavior
becomes complicated for the the entangledness of the vortex
lines. For example, if a trefoil knot shape &, vortex line split
into two un-self-knotted vortex lines &,&, with the same
strength. The self-knotted number of trefoil vortex lines is 2.
The contribution of vortex line &, to topological number is
C(&,), which is the sum of the self-knotted number and the
linking number between it and other vortex lines &(I#k; [
=1,2,...,N), ie.,
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N
CE)=2+ 2 Bimdléné). (60)

I=1k#1
After splitting, the contribution of vortex lines & and &, to
the topological number is C(&,,)+C(&,); i.e.,

N

Clé)+C(gn)=1+1+ >

I=1,k1#1k1#k2

Bi1 M L(é1,€)

N

>

I=1,k2#1,k2#k1

BiamoL(é2,€)), (61)

where 1 is the linking number of vortex line & and vortex
line &,. It is obvious that

N

N
> Bunl(&.6) = > B maL(&1,€)

=1 k#1 I=1.k1#1k1#k2
N
+ > Bia Mol (é2.€)).
=1, k2# k2 #k1
(62)
We can then obtain
C(&) =C(&) + C(&). (63)

VI. CONCLUSION

In the present study, a class of Euler flows of an ideal
incompressible liquid is considered. The kinetic helicity of
vortex lines is classified by Hopf index, Brouwer degree, and
linking number in geometry. A mechanism of generation and
annihilation of vortex line is given in Sec. IV. The evolution
equation of the vortex line has been given and its bifurcation
behavior at the bifurcation points is also discussed in detail
in Sec. V. The bifurcation behavior becomes complicated
because of the entangledness of vortex lines. We only give
three kinds of length scales at the neighborhood of the bifur-
cation point: [ (t—1")2, [oct—¢", I=const, which is different
from branching case.

Finally, it should be pointed out that in this paper we
discussed the bifurcation of vortex lines, focusing on the
kinetic helicity. In fact, the bifurcation of vortex lines is con-
nected with the energy, viscosity, and other elements. We
will discuss them in further papers.
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